
Google Summer of Code 2013
WordPress mobile app for BlackBerry 10 devices

Background

In the past years I've always keep on eye opened on the Google Summer of Code program, I loved
it since the first time, but I had no good project to submit.
This year, I've seen that the WordPress community has proposed an idea for the GSoC that was to
create a native WordPress app for the BlackBerry 10 platform.
Since I've already working with new BlackBerry 10 platform and developed some apps for it, I had
the feeling that it was the right time to proposed this idea for the GSoC. So, I get in touch with
some internal at WordPress and with my future mentor I've organized the idea, created a schedule
and submit it as a project for the GsoC. That was the real right time, cause I've been accepted.

Knowing parts

WordPress doesn't need any presentation, as it is the most used open source tool for blog
management. It has a gorgeous community always on the cutting edge about new technologies.
The new BlackBerry 10 platform get his power from QNX (an already famous operating system)
and Qt (that I already known, since I've used it for other opensource mobile platforms like Nokia
maemo/meego).
So for this project I've choose to use Qt/Cascades: Qt is a cross-platform application and UI
framework for developers using C++, but for the UI creation I choose to use Cascades (derived
from QML) that is a CSS & JavaScript like language, with Cascades is it possible to create beautiful
and clean UIs using the out of the box controls and animations and take the advantage of using the
BlackBerry 10 interactions.
To build the project I've used the QNX Momentics IDE with the BlackBerry 10 Native SDK (SDK
ver. 10.1.*) for Linux.

Initial state

For a first phase, I get in touch my mentor that help me for the kick off of the project. He suggested
to me to use some software for doing some initial mock-up(s) of how the UI could come. This was
an interesting part for me since I've never done something similar in a so professional way. So I've
started use balsamiq (my mentor's suggestion), that is a tool to create mock-up. I've played around
with it for the first two weeks, and after that I come up with a first mock-up.

Initial code

Once the mock-up has been done, I've start playing with WordPress XML-RPC API. Firstly I've
tried to understand how they work, what call I need to implement, and how they response. After that
I've created a standalone code to see how to get this stuff with Qt.
For any call you need to give an well-formed XML to the sever, and than you get a response that his
again an XML.
I've used Qt for this: create the XML for the request, send the request (e.g. make the api call) ,
receive the response, and parse the received XML in order to extrapolate the informations I need
and that I want to show to the user.
For the XML creation I've used QXmlStreamWriter – a class that provides an XML writer with a
simple streaming API – , to make the call I've used QNetworkAccessManager – a class that allows
the application to send network requests and receive replies – along with QNetworkRequest – part
of the Network Access API and is the class holding the information necessary to send a request over
the network – . For receive the response I've used QNetworkReply – a class that contains the data
and headers for a request sent with QNetworkAccessManager – in some (rare) situations (e.g. the
endpoint discovery) I need to wait until the response arrives in order to let the user go on to use the
app, so I've used a QEventLoop – a class that provides a means of entering and leaving an event
loop –
Once I got the response I use QXmlStreamReader – a class that provides a fast parser for reading
well-formed XML via a simple streaming API – to parse the XML.
When I parse the XML, I put the informations into a QVariantMap – that is a synonym for
QMap<QString, Qvariant>.
This QMap contains a pair of key/value, I choose to use this solution so I can put the XML tag as a
key of the map, and the content of the tag as the value. Furthermore I can easily insert this data into
a GroupDataModel – represents an ordered map of QVariantMap objects and/or QObject* pointers,
to be used as data for ListView – that I use it as a model for the ListView – a scrollable container
used to display a list of items – in order to present to the user a list with all the necessary
information, sorted by date.
But, sometimes the reply is an XML that I don't need to use as a model for some ListView, this is
the case, for example, when a post has been deleted, the returned XML doesn't contain data that
need to be shown to the user, it only contains a boolean that is setted true if the operation has been
executed successfully, false if it fails somewhere. In this case, there is a JavaScript function that will
intercept this situation and handling this case in a different way, without showing this crude result to
the user.

After some test, the first hiccup comes up. The login part wasn't as easy as I was thinking, there my
mentor came in my help. For a successfull login process I've to discover where the endpoint is. The
endpoint is a file (xmlrpc.php) that take care about the request and response to/from server, that is
where the blog has been placed. The most common fault, is that the user, in the 'Blog Address' entry,
will put something wrong, so I need to create a function to correct what the user insert, if it is
somehow wrong. Due to this, I've started to create a C++ function that will take care of this, this
step takes me a long time, because the things the function has to do were clear on my mind, but
translate it into some piece of code was kinda hard.

At least I came up with a line guide that is:

• the user insert nothing for 'Blog Address', than use the common
https://wordpress.com/xmlrpc.php as the endpoint.

• the user insert an url that end with 'xmlrpc.php' , that is the endpoint (after
validation)

• the previous fails, try to guess the XML-RPC URL by adding “/xmlrpc.php” and
removing if present the string (“/wp-admin/”)

• the previous fails, try to get the value from the pingback from the content of the page
at the URL inserted by the user

• the previous fails, download the content of the page at the URL inserted by the user
and find the following link element with rel=’EditURI’
◦ get the href attribute and download the RSD Document
◦ parse the RSD document and get the apiLink for WordPress
◦ the apiLink value is the XML-RPC URL endpoint of the blog

For the validation I do a simple API call on the method getUsersBlogs, if it returns a valid response,
then this is the endpoint.
Once I got this piece of code working, I've started to insert it into the project sources in order to
have a working login UI and a good working login process.
For the login UI I've used Cascades and created it in a bit, this is how it look at an early stage:

https://wordpress.com/xmlrpc.php

Once I've accomplished the login part, I've started keeping in time with my schedule and proceed to
the next step that is to add a blog(s).
For this part the most interesting thing has been the UI creation, I've created a ListView that
contains the blog(s) name and url returned from the API call getUserBlogs, I've implemented this
list in order to support multi-selection, that wasn't too hard to do since Cascades support it, in a
particular but working way.
After the user successfully login and select the blog(s) he want to use, I save this data in a SQLite –
SQLite is the in-process database system with the best test coverage and support on all platforms -
by using QSqlDatabase – a class that represents a connection to a database – and QSqlQuery – a
class provides a means of executing and manipulating SQL statements – and store it in the app data
directory.

Keep ready for the midterm

To be in time with the midterm evaluation, I've created all the necessary core part for reading
posts/comments and pages. I've also wrote the code to make a new post/comment/page. Here I had
to focus my attention on how to present this things to the user, how to put everything togheter. So
I've created a first mock-up of how it would be, but it doesn't look so good. So I changed idea and
started creating the best solution that comes to my mind.
In Cascades you have two methods to show a page to a user : a NavigationPane – a class that is
used for stack-like navigation between Page objects. The NavigationPane keeps track of a stack of
Page objects that can be pushed and popped on the stack – or a TabbedPane – a navigation control
that allows the user to switch between tabs. The tabs can be used to either completely replace
displayed content by setting new panes or to filter existing content in a single pane based on which
tab is currently selected.
Well, I had to come across a new method, using both classes, that (maybe) is not the best way, but it
works fine without so much trouble.
So, I've used a NaviagtionPane for the login process, after the user logged in and register the blog(s)
a TabbedPane show up, to let the user choice where he want to go, view posts/comments/pages, by
default the Post View will be shown.

TabbedPane

There a NavigationPane will take care of showing the other pages for the post/comment/page
management, like creating a new one or refresh the page by using the respective API call method :
wp.getPosts, wp.getComments, for the pages I've used the same API call that I use for the posts by
simply changing the post_type to 'page'. This saves me a lot of times, since I can use the same UI
that I made for posts also for the pages management. There is a boolean variable that will be setted
accordingly.

NavigationPane

There is also a ContextMenu – a context menu (sometimes known as the cross-cut menu) is
displayed when a user touches and holds a UI control – to let the user editing or delete an item.

Making this two things dealing together has been a little bit hard, but at the end they decided to
work together without too much problems.
After I managed how to show the lists containing the post/comment/page, I start to implement a
code to make a new blog post with an image. I read the WordPress XML-RPC API documentation
several times to accomplish this work, I've created a first solution but it doesn't seems to work good,
then I've ask for help to my mentor, and I found out that the solution was just a little forgotten tag in
the XML creation. Once I fixed it, the app has been capable of make new blog post with image
successfully, using the uploadFile API call method.
The app is also capable of showing the image, once you choose to view a post a JavaScript function
will try to see if there is any image, if so, a WebView – A control that is used to display dynamic
web content – is opened, else a simple Label – A non interactive label with one (or more) line(s) of
text – will be shown.
That was the milestone I've been accomplished for the midterm evaluation.

ContextMenu

Finalizing

Once the midterm successfully goes over, I continued the work following the schedule and I've
implemented an important part, that is the comments management.
For this part the core functions wasn't so hard to create, it was almost similar to all the other API
call that I've already implemented.
The funny part has been to create the UI. I'm not an active blogger so I don't know how to make it
better for who will use this app daily. Here a nice idea (or at least I hope so) come up in my mind,
showing the comments with the state bolded and colored: green for the approved status, orange for
the comments that are waiting to be approved; in this way I hope that the user will easily found how
to manage the comments. Another useful thing (I think), is that I've created a reply dialog, it has two
buttons and a text area where the user can put the reply, easy and efficient as it sounds.

Comments - reply dialog

Here I've changed a bit the context-menu, to let the user quickly take an action about a comment. So
the app is capable, through the context-menu, of changing (almost 'on-the-fly') the status of a
comment or to mark it as spam or delete it.

Comments - colorful context menu

Another small problem I faced out with, was the need of a 'waiter': something that will tell to the
user that there is an ongoing operation, like fetching/posting data. I wasn't able to find a suitable
solutions from the ones offered by Cascades, so I decide to make my own component. This new
component consist in a basic Dialog with a body, where you can put a message, and an
ActivityIndicator – a control that indicates that a process is being completed –

Once this has been done, I've finished up the other pages, take care about the UI but also of the C++
part, by cleaning it up and adjust some functions and fix some (not so small) bugs.

Custom Indicator

Here is a step-by-step screenshots :

Login Page Login Page - filled

Blog(s) List Blog(s) List - multiselection

Blog(s) List - add blog(s) Posts List - waiter

Posts List TabbePane - switching menu

Posts List - context menu Post view

Post List - context menu

Comments List Comments List - context menu

Comment view Comments - reply dialog

Edit Comment

Pages list - context menu

Pages List

Final considerations

The project was successfully completed as I planned on my schedule. The app is working and do all
the basic stuff for a complete blog management. On the other hand, the code needs a re-check, I
haven't checked all the functions, some may need a better error handling, some may fall in some
memory leak, there could be some unused function too.
For an example, for the creation of the XML in Qt initially I've started to use a QDom* , after I
switch, partially, to use a QXmlWriter, but in the code both method still exists, this is because I
would like to dig more on it, to see which is the best to use in this case, also in terms of
performances. Speaking about performances, the app doesn't look to eat too much CPU, neither
RAM, of course there is a significant increment of used RAM once you start the app (as for all the
other apps), but it never gets too high; of course a better profiling must be executed.
There is also an important unchecked part that is the image upload. I didn't check for the initial size
of the image, so if you upload a 10MB image (apart from the long time it will take) it will eat more
resources, and, since there are some methods to avoid this behavior it would be good to apply it.
The multi-blogs part hasn't been tested, that's mostly because I run out of time. I will check it later
on.
Some minor, but maybe useful, features are missing mostly because they weren't on my schedule,
but it would be good to implement it one day in order to have a rich-features app.

